
A Practical Approach to Reconciling
Availability, Performance, and Capacity in

Provisioning Extreme-scale Storage Systems

Lipeng Wan* Feiyi Wang† Sarp Oral† Devesh Tiwari† Sudharshan S. Vazhkudai† Qing Cao*

*University of Tennessee, Knoxville †Oak Ridge National Laboratory
{lwan1, cao}@utk.edu {fwang2, oralhs, tiwari, vazhkudaiss}@ornl.gov

ABSTRACT
The increasing data demands from high-performance com-
puting applications significantly accelerate the capacity, ca-
pability and reliability requirements of storage systems. As
systems scale, component failures and repair times increase,
significantly impacting data availability. A wide array of
decision points must be balanced in designing such systems.

We propose a systematic approach that balances and op-
timizes both initial and continuous spare provisioning based
on a detailed investigation of the anatomy and field failure
data analysis of extreme-scale storage systems. We consider
the component failure characteristics and its cost and im-
pact at the system level simultaneously. We build a tool
to evaluate different provisioning schemes, and the results
demonstrate that our optimized provisioning can reduce the
duration of data unavailability by as much as 52% under
a fixed budget. We also observe that non-disk components
have much higher failure rates than disks, and warrant care-
ful considerations in the overall provisioning process.

1. INTRODUCTION
Provisioning an extreme-scale storage system needs to fac-

tor in a variety of goals such as capacity, performance and
availability, while adhering to a fixed price point. While each
individual target is important, what is even more critical is
how they are reconciled with each other towards a practical
solution. Some examples of extreme-scale deployments in-
clude the Oak Ridge Leadership Computing Facility’s (OL-
CF) Spider I and II storage systems, Livermore Computing
Center’s Sequoia storage system [2] and Riken Advanced
Institute for Computational Science’s K-Computer storage
system [25]. Let us consider OLCF’s Spider I and II Lustre-
based parallel file systems, which were among the world’s
fastest Lustre storage systems at the time of their deploy-
ments, and intended for the Jaguar (No. 1 on the June 2010
Top500 list [31]) and Titan (No. 2 on the current Top500
list [31]) supercomputers, respectively. Spider I offered 10

ACM acknowledges that this contribution was authored or co-authored by an employ-
ee, or contractor of the national government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only. Permission to make digital or hard copies for per-
sonal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior spe-
cific permission and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807615

PB of capacity, using 13,440 1 TB drives, organized in RAID
6 arrays, delivering 240 GB/s; Spider II offers 40 PB of ca-
pacity, using 20,160 2 TB drives, using RAID 6, delivering 1
TB/s aggregate throughput. It is seldom the case that such
configurations are readily arrived at by either the customer
or the vendor. In fact, storage system designers negotiate
such terms with vendors during the procurement process,
based on broad targets derived from user requirements and a
desire to provide a certain quality of service to users. Provi-
sioning is therefore a complex reconciliation process between
often competing goals.

Large-scale storage systems are often built with scalable
system units (SSU). These basic building blocks are repli-
cated to meet the required capacity, performance and avail-
ability targets. Oftentimes, during the initial provisioning
stage, system designers need to optimize the configuration
under a fixed budget. These configuration options include
(but not limited to) optimizing the number of SSUs for ca-
pacity and performance; selecting a drive type and/or size
while balancing capacity, performance and rebuild times; e-
liminating single points of failures, and increasing system
redundancy.

From a day-to-day operations view point, the focus shift-
s to maintaining system health and minimizing data un-
availability and loss incidents. One effective way to increase
both system and data availability is to reduce the time spent
in repairing and replacing failed components. This can be
achieved by having an on-site spare parts pool. However,
uniformly provisioning spare parts for all hardware compo-
nents is neither cost effective nor practical. Therefore, a
critical concern in extreme-scale storage system deployment
and management is designing and implementing an effective
spare provisioning policy.

These are but a few design and operational constraints
to be considered. However, system designers are left with
back of the envelope calculations and rules of thumb when
it comes to such provisioning decisions. There are no mod-
els, simulations or tools that designers can use to plug in
parameters, and answer such what-if scenarios.

Contributions: In this paper, we address these pro-
visioning challenges that storage system designers face by
building tools that can help reconcile key figures of mer-
it, and answer what-if scenarios. Our study and the tool-
s are primarily intended for storage system architects, ad-
ministrators and procurement teams, for their provisioning
needs. We present a quantitative analysis on provisioning a
large-scale HPC storage system. Our results shed light on
the following: the components that affect cost, performance

and capacity; the components that are most important in
building a performance-oriented storage system; and the ef-
fect redundancy among components has on the reliability
of the overall system and its cost-effectiveness. In partic-
ular, we show that the I/O controller and disk enclosures
play a more dominant role than disk drives in building a
high-performance, cost-effective HPC storage system. We
also show that it is more cost-efficient to saturate the I/O
controllers of one SSU before scaling out. Scaling up SSUs
without saturating the controllers may potentially save disk
drive costs, but increases the overall cost significantly while
decreasing the system reliability. In order to ensure a high-
ly available operational experience, we also build a dynamic
optimization model for continuous spare provisioning. Our
results demonstrate that the model is not only able to min-
imize the number of unavailability events, but also reduce
the window of data unavailability.

2. THE GENERAL APPROACH
The design and procurement of extreme-scale storage sys-

tems are complex in nature. When faced with multi-faceted
considerations, system designers usually cope with the chal-
lenges by adopting an ad hoc process that is a combination
of back of the envelope calculations and the reliance on past
experiences. The end result may make sense, but they are
difficult to reason, with little or no quantifiable justification.
In this paper, we take a more systematic approach by focus-
ing on three key issues in designing such a system, namely
availability, capability (performance) and capacity, under a
fixed cost constraint. In particular, we divide the provision-
ing process into two phases, namely initial provisioning
and continuous provisioning. Our operational experience
suggests that designing for the second phase should receive
equal, if not more attention since the shelf life of an extreme-
scale storage system tends to be five years or even longer.
As can be seen in Table 1, the two phases also place different
emphasis regarding the aforementioned key characteristics.
Note that in both cases, we consider the total cost of own-
ership to be fixed.

Performance Capacity Availability Spare Parts

Initial Provisioning � � � Fixed
Continuous Provisioning Fixed Fixed � �

Table 1: Provisioning approaches. Check marks indicate the
performance metrics that will be optimized in each phase,
while “fixed” indicates the constraints during each phase.

The provisioning of the initial system deployment is pri-
marily based on the understanding of the trade-offs among
cost, performance and capacity. While cost remains the pri-
mary constraint, it is not the case that simply buying faster
disks will yield the best performance for a given budget.
This is because of the complex building structures of an
HPC storage system, as well as how different components
affect the performance, cost and reliability of the whole sys-
tem. We quantify these trade-offs in Section 4.

Since the component characteristics in storage systems
change over time, achieving high data availability requires
continuous provisioning and deployment. For instance, when
an extreme-scale storage system is initially deployed, all
components are new, but as time goes by, some components
fail and get replaced, which changes their performance or
reliability characteristics. If spare parts have been provi-

sioned, and readily available before the failure, the replace-
ment and repair of these faulty parts could be completed
quickly, significantly reducing the possibility of data un-
availability. Moreover, as failed components are replaced by
spare parts, the system contains both new and aging com-
ponents. Thus, the reliability status of the system during
operations is different from the one at the time of initial
deployment. Therefore, the spare provisioning policies for
continuous operations should also be different.

For both initial and continuous provisioning, a series of
what-if questions based on system capacity, capability and
component reliability characteristics need to be answered.
In the following sections, we will discuss three essential pieces
to support our study in answering these questions. First,
we present an anatomy of a large-scale storage system that
serves both as a background and a review of current practice.
Second, we present a thorough analysis of field failure data
collected from a production storage system. Our analysis
shows that the failure trend over time provides more insight
than vendor-supplied reliability metrics. Third, we present
a generic provisioning tool for storage systems, which is used
as a foundation for studying and evaluating our initial and
continuous provisioning models.

3. THE BUILDING BLOCKS
Building an effective provisioning mechanism requires a

clear understanding of the past and present characteristics,
as well as the expected future state of a given system. In
this section, we describe the foundational building block-
s that enable us to explore, model and experiment with
the proposed initial and continuous provisioning methods.
First, we dissect an extreme-scale storage system, provide
a perspective on how large-scale storage systems are built
from scratch, and discuss the lessons learned in the process.
We then analyze a multi-year field failure dataset from an
extreme-scale storage system. This dataset provides not on-
ly a detailed view on the storage system’s reliability and
availability characteristics, but also insights and parametric
inputs to the follow-on provisioning tool and experimental
design. Finally, we describe the design and implementation
of the provisioning tool, and analyze how to leverage the
tool to answer several provisioning questions in sections 4
and 5.

3.1 Anatomy of a Large-Scale Storage System
Extreme-scale storage systems are built using SSUs for

ease of design, procurement, deployment, management and
maintenance. An SSU consists of all required components to
build a stand alone file system. In order to reach the design
targets, multiple SSUs are acquired and deployed. SSU ex-
amples include block-level storage systems (e.g. DDN SFA
series [5], IBM DS series [14], NetApp FAS series [18]) or file-
system level appliances (e.g. Seagate ClusterStor9000 [29]
or Panasas ActiveStor [19]).

As an example of an extreme-scale storage system, we
present the architecture of OLCF’s Spider I. The design tar-
gets and specifications of Spider I are well documented [30].
Spider I was deployed in 2008, and remained operational un-
til 2013, serving the Jaguar supercomputer that was No. 1
on the Top500 list of machines in June 2010. At the time
of deployment, Spider I was announced as the fastest and
largest known Lustre parallel file system in the world. We
use Spider I as a case study for our work as its field fail-

ure data is publicly available [33]. Spider I was built using
48 SSUs, each one consisted of a DDN S2A9900 controller
couplet [4], with 280 1 TB SATA disks configured in 5 disk
enclosures. Each couplet was connected to 4 file system
servers. Spider I offered an aggregate system performance
of 240 GB/s, and provided over 10 PB of RAID 6 formatted
capacity, using 13,440 SATA disks and 192 file system server-
s. It served more than 26,000 file system clients from several
clusters and the Jaguar supercomputer. Each Spider I DDN
couplet was composed of two singlets. Host-side interfaces
in each singlet was populated with two dual-port 4x DDR
IB HCAs. The back-end disks were connected via ten SAS
links on each singlet. For a SATA based system, these SAS
links connected to expander modules within each disk shelf.
The expanders then connected to SAS-to-SATA adapters on
each drive. All components had redundant paths. Each sin-
glet and disk tray had dual power-supplies where one power
supply was powered by the house power and the other by
the UPS. Figure 1 illustrates the internal architecture of a
Spider I DDN S2A9900 couplet.

D1 D14

Disk Enclosure 1

DEM

D15 D28... DEM

D29 D42... DEM

D56... DEM

DEM

DEM

DEM

DEM

A1

B1

C1

D1

E1

F1

G1

H1

P1

S1

A1

B1

A2

B2

C2

D2

E2

F2

G2

H2

P2

S2

A2

B2

Controller2

...

Disk Enclosure 2

Disk Enclosure 5

Controller1

...

D43

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

Power Supply
(House)

Power Supply
(UPS)

Power Supply
(House)

Power Supply
(UPS)

Power Supply
(House)

Power Supply
(UPS)

Figure 1: Spider I S2A 9900 architecture

3.2 Field-gathered Failure Data Analysis
In this section, we analyze the field gathered failure data

of different hardware components used in the Spider I file
system at OLCF, and provide an account of the key findings
learned through the process.

3.2.1 Vendor Provided Reliability Metrics
System vendors often provide AFR (annual failure rate)

or MTTF (mean time to failure) of each type of FRU (field
replaceable unit). As stated earlier, Spider I consists of 48
SSUs, and the AFRs of the FRUs are listed in Table 2.
Vendor provided reliability metrics can be used to derive a
coarse-grained estimation of a storage subsystem’s reliabili-
ty. As an example, one model that has been widely used to
estimate the data availability of disk redundancy groups is
continuous Markov chain, which has an underlying assump-
tion that the failure rates of disk drives are constant (time
independent) [3, 10, 20, 27]. With such a model, the vendor-
provided metrics, AFRs and MTTF, can be used to establish
the failure model of each disk drive, which assumes that the
time to failure of disk drives is an exponential distribution.

Unit Vendor Actual
Number IDs Cost ($) AFR AFR

Controller 2 15-16 10,000 4.64% 16.25%
House Power Supply
(Controller)

2 1-2 2,000 0.83% 4.38%

Disk Enclosure 5 27-31 15,000 0.23% 1.17%
House Power Supply
(Disk Enclosure)

5 3-7 2,000 0.08% 8.50%

UPS Power Supply 7 8-14 1,000 3.85% NA
I/O Module 10 17-26 1,500 0.38% 0.92%
Disk Expansion
Module (DEM)

40 32-71 500 0.23% 0.29%

Baseboard 20 72-91 800 0.23% NA
Disk Drive 280 92-371 100 0.88% 0.39%

Table 2: FRUs in one scalable storage unit

3.2.2 Field Failure Data
Besides the vendor-provided metrics, system administra-

tors typically maintain field-gathered failure and replace-
ment data. Such information is much closer to the reality
than vendor provided reliability metrics. In fact, by an-
alyzing the field-gathered failure data of storage systems,
several existing studies have shown that the failure rates of
disk drives and other hardware components can vary over
time [11, 22].

The failure and replacement data for Spider I was collected
from all of the 48 SSUs during its 5-year operational period.
The dataset contains timestamps when device replacement
was needed. We first count the number of failures of each
type of FRU during 5 years, and then calculate their actual
AFRs. The results are summarized in Table 2. Below is a
list of the key findings:

Finding 1. The actual annual failure rate (AFR) of Spi-
der I disks is only 0.39% – much smaller than what has been
reported in previous studies [26]. It is hard to generalize this
as the environment, testing conditions and vendors are quite
different. Efficient facilities support, e.g., better power and
cooling infrastructure, might be a factor here. However, it is
not possible to quantitatively establish a causal relationship
between operating conditions and disk drive failure rate.

Finding 2. Aggressive burn-out tests at the time of sys-
tem deployment help eliminate potential problematic or s-
lower disks early on, which improves the overall aggregate
parallel performance. It also keeps the disk AFR low by re-
moving potential problematic disks from the population.

On the point of stress testing and slow disk identification,
there are no community standards for this process. Our
method involved individually stressing each SSU, and iden-
tifying the slowest disk RAID groups. Then, we exercised
those groups separately, and collected latency statistics on
the disks individually. This process should be performed
during initial deployment, and repeated periodically to keep
a healthy and uniformly performing disk population. Our
records indicate that the AFR before the acceptance of the
Spider I system was much higher (2.2%). Our early testing
helped remove close to 200 slow or bad disks. This resulted
in a much lower AFR during production (0.39%).

Finding 3. Non-disk components of Spider I have higher
AFRs than vendor provided metrics.

While this comes as a surprise, it also suggests that future
studies should carefully model and account for the reliability
of non-disk components as they contribute heavily towards
the overall reliability of the system.

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)
Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(a) Controllers

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(b) Dems (Disk Expansion Modules)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(c) Disk Enclosures

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(d) Disk Drives

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(e) House Power Supply

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(f) I/O Modules

Figure 2: Distribution of time between device replacements for different types of FRUs in Spider I

Next, we derive the empirical, cumulative distribution
function (CDF) of the time between device replacements for
different types of FRUs (Figure 2). We use four distributions
to fit the CDF (Figure 2).

For example, as shown in Figure 2(d), when the time be-
tween disk replacements is relatively small, a Weibull dis-
tribution with decreasing failure rate is a better fit; with
increasing time between disk replacements, the failure rate
is stable, and an exponential distribution is a better fit. This
observation indicates that in reality the failure rate of disk
drives could be neither constant nor monotonically increas-
ing or decreasing, which differs from what is usually assumed
by many existing studies [7, 8, 11, 28].

Finding 4. Disk drive failures can be more accurately mod-
eled by joining two different distributions.

FRU replacement times for Spider I have not been record-
ed or shared with the public. However, it was stated that
most of these replacements were completed within 24 hours,
if spare parts were available on-site. If there were no spare
parts on-site, a replacement was awaited, and usually took
at least 7 days [21].

3.3 Storage System Provisioning Tool
Based on our understanding of the architecture of extreme-

scale storage systems and failure data obtained from the field
and vendors for Spider I, we have built a generic provision-
ing tool to study how different provisioning policies impact
data availability.

3.3.1 Design Considerations
A large-scale storage system is often composed of thou-

sands of FRUs, and the failure dependencies between them
are complex. Specifically, one FRU’s failure might have a

FRU 2

FRU 1

...

FRU Type 1

... Failure Dependency
Analysis

Failure Events Synthesis

System-level
Reliability

Reliability
Characteristics

for each Type of
FRU

Phase 1 Phase 2

Failure
Generation

FRU n

FRU n-1

FRU Type N ...
Failure

Generation

Physical Components
Topology Information

Figure 3: Framework of the provisioning tool

cascading effect on other FRUs, as there is often a correla-
tion between the failures of closely-coupled hardware com-
ponents in a storage system. For example, a disk enclosure’s
failure might lead to the unavailability of hundreds of disk
drives. Inspired by a conventional diagrammatic method for
modeling the reliability of complex systems called the reli-
ability block diagram (RBD) [24], we build a provisioning
tool, which can estimate not only the number of failures
during a certain period of operation for each type of FRU,
but also the system-level reliability by analyzing the failure
propagation.

As shown in Figure 3, in phase 1, the failure events of each
type of FRU are randomly generated based on the reliabili-
ty characteristics, which are determined by vendor-provided
metrics, historical failure data and the provisioning policies
used. Thereafter, the failure events are randomly allocated
to FRUs that belong to the same type, and logged through-
out each FRU’s life cycle. In phase 2, the framework ex-
tracts the failure dependencies from all FRUs, and builds
an RBD based on the topology of the storage system. For
example, the RBD of the SSU in Table 2 is shown in Fig-
ure 4, where each block is assigned a unique ID to represent

FRU’s Type
Time between Failure Time to Repair Time to Repair (without spare part)

Distribution Parameters Distribution Parameters Distribution Parameters

Controller Exponential rate = 0.0018289 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
House Power Supply

(Controller)
Weibull

shape = 0.2982,
scale = 267.7910

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Disk Enclosure Weibull
shape = 0.5328,
scale = 1373.2

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
House Power Supply

(Disk Enclosure)
Exponential rate = 0.0024351 Exponential rate = 0.04167

Shifted
exponential

rate = 0.04167,
offset = 168

UPS Power Supply * Exponential rate = 0.001469 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

I/O Module Weibull
shape=0.3604,

scale =523.8064
Exponential rate = 0.04167

Shifted
exponential

rate = 0.04167,
offset = 168

Disk Expansion
Module (DEM)

Exponential rate = 0.000979 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Baseboard * Exponential rate = 0.000252 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Disk Drive [0, 200], Weibull
shape = 0.4418,
scale = 76.1288

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
[200, ∞], Exponential rate = 0.006031

*Field data missing, vendor-provided AFRs are used.

Table 3: Parameter settings of the provisioning tool

...

0

15

17 18 19 20 21

16

22 23 24 25 26

32

27 28 ...

33 34 35 36 37 38 39 ...

72 73 74 75

92 105... ...

1 8 2 9

3 10 4 11

...

House Power Supply
(Controller)

UPS Power Supply
(Controller)

Controller

I/O Module

House Power Supply
(Disk Enclosure)

Disk Enclosure

DEM

Baseboard

Disk Drive

UPS Power Supply
(Disk Enclosure)

Figure 4: RBD of a scalable storage unit

an FRU (for the convenience of using graph algorithms, we
create a dummy block that does not represent any real FRU
as the root (block 0) of all blocks in the RBD). In the RBD,
the reliability of each block depends on its parents, while
determining that of its children. Given all such extracted
failure dependencies, our tool synthesizes the results across
all components, and provides detailed information on the
estimates of the various metrics of interest, e.g., the average
number of failed FRUs, events leading to data unavailability
or data loss and for how long.

3.3.2 Implementation and Validation
As stated in Section 3.2, for each type of FRU, we fit the

empirical data of the time between device replacements in
Spider I to four different distributions. In order to choose
the best parameter settings for the provisioning tool, we
apply the Chi-squared test [12] to determine the probability
distribution and corresponding parameters that are more re-
alistic to generate the failure events. To generate the repair
time, we use the exponential distribution with two different
mean values, 24 hours for FRUs with a spare part and 168
hours (7 days) for those that do not. In certain cases, when
the repair time is much longer, the provisioning tool will be
even more critical to improve the overall performance, as
an unoptimized provisioning strategy could lead to a much

longer window of vulnerability and higher probability of da-
ta unavailability. The chosen distributions and parameters
are listed in Table 3.

An interesting fact worth noting in Table 3 is the distri-
bution parameter settings for generating disk drive failure
events. As our analysis of disk failure data reveals (see Fig-
ure 2(d)), when the time between disk replacements is rel-
atively small (less than 200 hours), a Weibull distribution
with decreasing failure rate is a better fit; with the time be-
tween disk replacements increasing, the failure rate becomes
stable, and an exponential distribution fits the empirical da-
ta better. Therefore, we use a method called inverse trans-
form sampling [6] to generate disk failure events so that the
time between failures fits a crafted distribution, which is ac-
tually a join of a Weibull distribution with decreasing failure
rate and an exponential distribution with constant failure
rate.

After a failure event of a specific FRU type is generated, it
will be randomly allocated to an attribute device belonging
to that FRU type in the system, and logged as a failure of
that device. A random repair time will then be generated
and logged for that device so that we can derive all its failure
time intervals for the operational period. Once the failure
logs of all devices for the operational period are obtained, the
tool will synthesize them based on the RBD to derive the
duration of temporary data unavailability and permanent
data loss. For example, in the RBD shown in Figure 4,
if the execution results indicate all parents of an FRU are
down during a time period, the FRU is tagged as unavailable
no matter what its own results are during the same time
interval.

During the 5-year operation of Spider I, we only observed
two data unavailability events. The lack of empirical data
makes it difficult to validate our tool on system-level data
availability. However, we can validate the results of each
type of FRU using the field-gathered failure data. As listed
in Table 4, we compare the number of failures of each type of
FRU observed in the empirical data against the results from
the provisioning tool during a 5-year period (we run the tool
10,000 times, and calculated the average number of failures).
We can see that the results of our tool approximates to the
empirical data, which demonstrates its accuracy.

of Total Empirical Estimated Estimation
Component Type Units # of Failures # of Failures Error

Controller 96 78 79 1.04%
House Power Supply
(Controller)

96 21 27 6.25%

Disk Enclosure 240 14 20 2.5%
House Power Supply
(Disk Enclosure)

240 102 105 1.25%

I/O Module 480 22 24 0.42%
Disk Expansion
Module (DEM)

1920 28 42 0.73%

Disk Drive 13440 264 338 0.55%

Table 4: Validation on FRU failures estimation

4. INITIAL PROVISIONING
Provisioning an HPC storage system for initial deploy-

ment involves understanding the tradeoffs between perfor-
mance, cost, capacity and reliability. Often times, system
architects are provided with a fixed budget for an initial ac-
quisition and deployment, with an emphasis on optimizing
for performance and capacity. Reliability characteristics at
the SSU-level or at the system-level are also factored in dur-
ing this phase, with vendor support and spare part pools
as the primary vehicles for maintaining system reliability.
In this section, we attempt to reconcile these factors for an
initial deployment, and study their interplay.

0!

1!

2!

850!

875!

900!

925!

950!

20
0!

22
0!

24
0!

26
0!

28
0!

30
0!

C
os

t (
10

00
 U

SD
)!

Number of Disks in one SSU!

C
ap

ac
ity

 (P
B)
!

Cost! Capacity !

(a)

0!

5!

10!

850!

875!

900!

925!

950!

20
0!

22
0!

24
0!

26
0!

28
0!

30
0!

C
os

t (
10

00
 U

SD
)!

Number of Disks in one SSU!

C
ap

ac
ity

 (P
B)
!

Cost! Capacity !

(b)

Figure 5: The cost and capacity trade-offs for 200 GB/s
system-wide I/O bandwidth performance target. 1 TB drive
(a) vs. 6 TB drive (b)

2!

4!

6!

8!

4100!
4150!
4200!
4250!
4300!

20
0!

22
0!

24
0!

26
0!

28
0!

30
0!

C
os

t (
10

00
 U

SD
)!

Number of Disks in one SSU!

C
ap

ac
ity

 (P
B)
!

Cost! Capacity !

(a)

0!
10!
20!
30!
40!
50!

4100!

4150!

4200!

4250!

4300!

20
0!

22
0!

24
0!

26
0!

28
0!

30
0!

C
os

t (
10

00
 U

SD
)!

Number of Disks in one SSU!

C
ap

ac
ity

 (P
B)
!

Cost! Capacity !

(b)

Figure 6: The cost and capacity trade-offs for 1 TB/s
system-wide I/O bandwidth performance target. 1 TB drive
(a) vs. 6 TB drive (b)

Optimizing for performance: Each SSU can achieve a the-
oretical peak performance that is primarily determined by
the type of the I/O controller and the number of disks in each
SSU. An SSU does not necessarily have to be 100% popu-
lated (in terms of the number of disks it can accommodate)
in order to achieve its peak I/O performance. Therefore,
the overall performance of a storage system, consisting of
multiple SSUs, can be expressed as:

Performance = NSSU∗max(SSUPerf , DSSU∗BWdisk), (1)

whereNSSU is the number of SSUs in the system, SSUPerf

is the peak performance of one SSU, DSSU is the number of
disks in one SSU and BWdisk is the bandwidth achievable
from one disk. Equation 1 can be optimized independent-
ly for sequential or random I/O workloads. However, the
selected workload should reflect the design parameters of
the storage system and represent the expected production
environment.

The cost of the storage system is the sum of the cost of all
components (as listed in Table 2, with their respective price
points per unit). The capacity of the whole system can be
expressed as:

Capacity = DSSU ∗NSSU (2)

Impact of number of disks and disk capacity on the overall
cost and performance: While investigating how these fac-
tor into building an HPC storage system, we concluded that
disk prices do not have the first order impact on provisioning
a cost-effective or high-performance storage system. This is
mainly because disks constitute only 15-20% of the cost of
one SSU. Therefore, when designing a storage system with
performance as the primary objective, it is optimal to buy
as many SSUs as possible before optimizing or negotiating
for disk price or capacity. Once the number of SSUs are
fixed (i.e., the peak achievable performance point is fixed),
it remains unclear how the number of disks and the storage
capacity per disk affect the cost and capacity of the overall
system. To study that, next we present a case study where
we set performance goals as 200 GB/s and 1 TB/s, and build
a storage system with the SSU as characterized by Table 2
and Figure 1. Note that, our results assume specific param-
eters for disks and other components of the SSUs, but the
same study can be carried out for other chosen parameters.

We assumed that each disk can provide 200 MB/s of
bandwidth, therefore 200 such disks are enough to saturate
one SSU (assuming a 40 GB/s peak I/O bandwidth per con-
troller pair). Each SSU in our case accommodates up to 300
disks, therefore buying any disks beyond 200 is equivalen-
t to buying more capacity. Also, filling an SSU with less
than 200 disks (the number of disks that saturate our SSU)
always resulted in lower performance per unit price. The
underlying reason is that other components of an SSU sig-
nificantly dominate the cost of the whole system compared
to the disks. Therefore, we focus on how filling an SSU with
200 to 300 disks changes the cost and capacity of the system
(Figure 5 and 6). We consider two types of disks (1TB and
6TB, with same I/O performance bandwidth but different
costs: 100 and 300 USD, respectively). As expected, the
relationship is linear in terms of performance and capaci-
ty. It is worth noting that the relative increase in the cost
of the system is very modest when going from 200 to 300
disks. However, the difference between the choice of 1 TB
disks vs 6 TB disks may itself bring cost differences of over
$50K (Figure 6).

Finding 5. The I/O controller and disk enclosures play
a more dominant role than disk drives in building a high-
performance, cost-effective storage system. It is more cost-
efficient to saturate the I/O controllers of one SSU before
scaling out if performance is the highest design priority.

One may also note that there are availability and reliabil-
ity issues involved in increasing the number of disks. How-
ever, we want to point out that the MTBF of an SSU is not

affected significantly by increasing the number of disks from
200 to 300. Vendor-provided statistics listed in Table 2 as
well as the field-collected failure data indicate that the pe-
ripheral components have lower MTBF than disks. Also,
redundancy schemes (e.g. RAID 6) significantly decrease
the probability of an interruption. However, there may be
cases of multiple concurrent disk failures in the same RAID
group, which may necessitate a rebuild process. In such a
scenario, 1 TB disks are better than 6 TB disks as rebuild-
ing is faster for the same amount of disk space that needs
to be reconstructed. This is because the bandwidth does
not change significantly across these disk types for a given
family of disks. We believe this assumption will be valid for
the near future. Of course, there are technologies that can
improve the dynamics of disk redundancy or rebuild process.
However, such new technologies are slow to penetrate the s-
torage market. Parity declustering, as an example, substan-
tially reduces the rebuild window by distributing data and
redundancy stripes over a number of disks [13]. It was first
proposed more than two decades ago, and today there are
only two products in the HPC storage market that support
the parity declustering feature. Based on our experience, we
are not predicting a disruptive change to this dynamic.

Effect of increasing disks/SSU on availability and the pro-
visioning budget: Next, we study how the increase in cost
due to extra capacity affects the reliability of the system.
If the increase in the number of disks also significantly de-
creases the spare provisioning budget, then perhaps even
this moderate increase in cost is not acceptable. Using the
provisioning tool (Section 3.3), we calculate the number of
events when data becomes unavailable in a 1 TB/s system
(25 SSUs) for a period of 5 years if no provisioning policy
is applied. Based on the disk failure rate calculated from
the failure data, we also estimate the potential cost of disk
replacement for a 1 TB/s system during a 5-year period. As
can be seen in Figure 7, the number of data unavailability
events and disk replacement cost increase with the number
of disks per SSU.

Finding 6. Fixed initial provisioning can be optimal from
cost efficiency and capacity perspectives. However, it alone
is not sufficient for improving the reliability dynamics. A
well-designed, continuous provisioning policy is needed to
maintain the system’s data availability requirement under
a fixed provisioning budget. This is also true if we plan to
increase the disks/SSU for extra capacity.

200 220 240 260 280 300
1.2

1.3

1.4

1.5

1.6
25 SSUs, RAID6 Configuration

Number of Disks per SSU

N
um

be
r

of
 D

at
a

U
na

va
ila

bl
e

E
ve

nt
s

200 220 240 260 280 300
8

10

12

14

16

P
ot

en
tia

l C
os

t o
f D

is
k

R
ep

la
ce

m
en

t
(1

,0
00

 U
S

D
)

Unavailability
Cost

Figure 7: Number of data unavailable events and potential
disk replacement cost for 1 TB/s systems (25 SSUs).

5. CONTINUOUS PROVISIONING
Ideally, if we have an unlimited budget for spare provision-

ing, we can provide unlimited spares for each component in

the system. However, in reality the budget is always limit-
ed, and we can only provision a limited number of spares.
Therefore, the goal of continuous provisioning policy is to
explore such dynamics under constraints.

5.1 Ad Hoc Provisioning
To the best of our knowledge, most of the provisioning

policies used in large-scale HPC storage systems are ad hoc,
and are based on system administrators’ intuition and ex-
periences. We use Spider I to illustrate the ad hoc policies.
As listed in Table 2, vendor-provided statistics for Spider I
indicate that controllers have the highest failure rate among
all FRUs, which can also be verified by the actual device re-
placement data. Thus, the first intuitive provisioning policy
would be to provision as many controller spares as possible
for a given provisioning budget. However, the controller-
first provisioning policy does not improve the system data
availability significantly when compared against not provi-
sioning any budget for spares at all, as the two controllers in
the same SSU are configured as a fail-over pair in the Spider
I architecture. Only when both of them are down simulta-
neously does it lead to data unavailability, which is a rare
event in practice.

The deficiency of the controller-first provisioning policy
suggests that the built-in hardware redundancy might have
more impact on data availability compared to the componen-
t failure rates. In other words, if the hardware redundancies
are not well-designed, it could make the system more vul-
nerable to failures of some devices (also observed in Spider
I). As shown in figures 1 and 4, the failure of a disk enclo-
sure causes two disks in the same RAID group to become
unavailable simultaneously. On the other hand, all the other
FRUs combined will lead to at most one disk unavailability
in each RAID group. This means that the storage system
is more vulnerable to disk enclosure failures. Therefore, a
more effective ad hoc provisioning policy for Spider I is to
provide spares for disk enclosures first.

Finding 7. The 5-disk enclosure architecture of Spider I
was selected for minimizing the cost. However, this selection
resulted in lower data availability. This was a lesson learned
from the Spider I experience, and rectified in Spider II by
switching to a 10-disk enclosure configuration.

Based on the analysis of the system architecture and the
redundancy characteristics of Spider I, we realized that most
potential data unavailability scenarios could be caused by si-
multaneous failures of different types of FRUs (e.g., a disk
enclosure failure coupled with a double power supply fail-
ure on another enclosure). If the budget is allocated for
provisioning a specific type of FRU first, there might not
be enough left to maintain spares for other types of FRU,
which could negatively impact the data availability. Thus,
neither controller-first nor enclosure-first provisioning pol-
icy is optimal. We will introduce our optimized dynamic
spare provisioning model in the next section, and compare
our model with the ad hoc provisioning policies in Section
5.3.

5.2 Dynamic Spare Provisioning Model
Our proposed model aims to optimize the spare provision-

ing policy for large-scale storage systems in order to achieve
high data availability, given a limited provisioning budget.

N Number of types of FRU in system
FRUi i-th type of FRU
fi(x) PDF of time between failures of FRUi

Fi(x) CDF of time between failures of FRUi

hi(x) Hazard rate of FRUi

MTBFi Mean time between failures of FRUi

MTTRi Mean time to repair of FRUi

τi Delay caused by waiting for a new FRUi to be delivered

tfaili Time point when last failure of FRUi occurred
tcur Current time when we need to update the spare pool
tnext Next time when we need to update the spare pool
mi Impact FRUi has on data unavailability
bi Unit price of FRUi

B Annual budget for spare provisioning

Table 5: Notations of Symbols

The notations of all the symbols used in this section are
listed in Table 5.

5.2.1 Intuition and Assumption
The impact each FRU has on system availability is usual-

ly determined by two factors: its own reliability (e.g., some
FRUs fail less often than others, or can be repaired more
quickly) and the system architecture (e.g., in Spider I, as
the lack of hardware redundancy makes the system more
vulnerable to disk enclosure failures, disk enclosures have
more impact on data availability). However, few existing
ad hoc provisioning policies focus on these two factors si-
multaneously. Therefore, the basic idea behind our spare
provisioning optimization model is to quantify both of these
factors, and allocate more budget towards provisioning s-
pare parts for FRUs that have more impact on the data
availability of the storage system.

The assumption we made about the provisioning budget
is simple but realistic. Specifically, at the beginning of each
year, system administrators get a fixed budget that we call
the annual budget, and use it to prepare spares for different
FRUs according to a specific provisioning policy.

5.2.2 Reliability Characteristics of Different FRUs
Since we already have the field-gathered failure data and

vendor-provided AFR, quantifying the reliability of each type
of FRU is easy. We obtain the probability density function
(PDF) of the time between the failures of a type of FRU
by fitting the failure data. Thereafter, we can estimate the
number of failures of such a type of FRU that will occur
during a future period. For example, we use fi(x) to de-
note the PDF of the time between failures of FRUi, then
the CDF can be calculated as Fi(x) =

∫ x

0
fi(t)dt. Based on

this definition, the hazard rate of FRUi is given as:

hi(x) =
fi(x)

1− Fi(x)
(3)

Let us assume the last failure of FRUi occurred at time
tfaili . We need to estimate the number of failures, yi, of
FRUi between the current time, tcur, when the spare pool is
being updated and the next time, tnext, the spare pool will
need an update. This is given as follows:

yi =

∫ tnext−t
fail
i

tcur−t
fail
i

hi(x)dx (4)

The above formula can estimate the expected number of
failures between tcur and tnext accurately if the time be-
tween the failures fits an exponential distribution, which has
a time-independent hazard rate. However, for a Weibull dis-
tribution, if the time between updating the spare pool is rel-

atively longer compared to the mean time between failures,
this formula cannot give an accurate estimation. This is be-
cause, once a failure occurs between tcur and tnext, which
is very possible because of the short mean time between
failures, the hazard rate should increase. Therefore, for a
Weibull distribution, if

tnext − tcur

MTBFi
>

∫ tnext−t
fail
i

tcur−t
fail
i

hi(x)dx, (5)

we can use

yi =
tnext − tcur

MTBFi
, (6)

instead of (4), where MTBFi is the mean time between fail-
ure of FRUi. Given the PDF of the time between fail-
ures of FRUi, fi(x), MTBFi can be calculated by solving∫∞
0
xfi(x)dx.

In Spider I, if no spare part was available on-site, a device
replacement will be delayed by at least 7 days. If we use
MTTRi to denote the mean time to repair of FRUi when s-
pare parts are available on-site, τi to denote the delay caused
by waiting for a new FRUi to be delivered, then the total
time spent on replacing FRUi is MTTRi + τi, if there is no
spare on-site when the replacement is required.

5.2.3 Impact of System Architecture on Availability
To quantify the impact of the system architecture on da-

ta availability, we need to analyze the physical structure of
the system, and derive failure dependencies between the d-
ifferent FRUs. Here we consider one SSU of Spider I as an
example. All FRUs of this SSU are listed in Table 2.

The RBD illustrates the failure dependencies between the
different FRUs. By analyzing the structure of the RBD, we
can derive the impact each FRU has on the data unavailabil-
ity of the storage system. For instance, each RAID group
in the SSU in Figure 4 contains 10 disk drives, which are
organized as RAID level 6, and can tolerate 2 disk failures.
Each leaf block represents a disk drive, and there are 16 d-
ifferent paths from one leaf block to the root. On each of
these 16 paths, if one FRU fails, that path will be unavail-
able. If and only if all of these 16 paths are unavailable,
the associated disk drive will become unavailable. If more
than 2 disk drives in one RAID group are unavailable, a da-
ta unavailability occurs. In fact, the more available paths
each RAID group has, the more reliable each RAID group
is. Therefore, we can quantify the impact of each FRU on
data unavailability by counting the number of paths that
will become unavailable in one RAID group, if such an FRU
has been removed from the RBD.

Specifically, since triple-disk unavailability in one RAID 6
group leads to data unavailability, we only count unavailable
paths of each triple-disk combination in one RAID group.
For example, failure of one controller makes every disk in
one RAID group lose 8 paths, while the failure of one disk
enclosure only makes two disks in one RAID group totally
unavailable (each loses 16 paths). Therefore, we use 8× 3 =
24 as the impact of a controller, while 16 × 2 = 32 as that
of a disk enclosure. Table 6 shows the impact of each FRU
quantified in this way.

5.2.4 Optimization Model and Dynamic Provision-
ing Algorithm

In order to maximize data availability, our optimization

Quantified Impact
Controller 24
House Power Supply (Controller) 12
UPS Power Supply (Controller) 12
Disk Enclosure 32
House Power Supply (Disk Enclosure) 16
UPS Power Supply (Disk Enclosure) 16
I/O Module 16
Disk Expansion Module (DEM) 8
Baseboard 16
Disk Drive 16

Table 6: Quantified impact of each type of FRU

model tries to minimize the total unavailable time of the end-
to-end paths that belong to each triple-disk combination of
a RAID group in the RBD. For example, as we mentioned
above, one disk enclosure failure makes a triple-disk combi-
nation in one RAID group lose 32 end-to-end paths. If the
disk enclosure has no spare part on-site and cannot be re-
placed quickly, those 32 end-to-end paths will be unavailable
for a longer duration, which increases the probability that
all end-to-end paths of the triple-disk combination become
unavailable within the same time interval.

We define a variable xi to denote how many spare parts
are provided for FRUi. Then, the total unavailable time
of the end-to-end paths, caused by failures of FRUi can be
calculated as

∆tdown
i = mixiMTTRi +mi(yi − xi)(MTTRi + τi), (7)

where mi is the number of unavailable end-to-end paths
caused by failures of FRUi (see Table 6) and yi is the esti-
mated number of FRUi failures that would occur before the
next spare pool update.

Let us assume the unit price of FRUi is bi, the annual
budget for spare provisioning is B. Then, we can establish
the following linear programming optimization model to find
out how many spares should be prepared for each type of
FRU in the coming year.

arg min
xi

N∑
i=1

miyi(MTTRi + τi)−mixiτi; (8)

s.t.

N∑
i=1

xibi ≤ B; (9)

xi ≤ yi, ∀i ∈ {1 . . . N} (10)

In this linear programming model, the objective function
is to minimize the total unavailable time of the end-to-end
paths that belong to each triple-disk combination of a RAID
group in the RBD. The two constraints are that the total
provisioning cost cannot exceed the annual budget and for
each type of FRU, the number of provisioned spares should
not exceed the expected number of failures.

The pseudo-code of the spare provisioning algorithm is
shown in Algorithm 1. At the beginning of each of year, sys-
tem administrators can first check the spare pool, and find
out which FRU has no spare part. Then they can calculate
all required parameters for these unprovisioned FRUs, and
resolve the optimization model to find out those that need a
spare part. Finally, based on the optimization results, they
add the needed spare parts into the spare pool.

5.3 Continuous Provisioning Evaluation
Recall that we introduced two different ad hoc provision-

ing policies in Section 5.1 (controller-first and enclosure-
first). We compare the performance of our continuous pro-
visioning model with the two ad hoc provisioning policies

Algorithm 1 Spare Provisioning Algorithm

Input: Current spare pool SP, replacement log and unit price of each
type of FRU, annual budget for spare provisioning B.

Output: Spare provisioning results X = [x1, x2, . . . , xN].
Obtain number of spares in SP, n = [n1, n2, . . . , nN];
Calculate [m1,m2, . . . ,mN];
Calculate [MTTR1,MTTR2, . . . ,MTTRN]
for i = [1, 2, . . . , N] do

Calculate yi, the expected number of failures of FRUi;
Add yi into Y, and MTTRi into MTTR;
Add mi into m, and bi into b;

end for
X = ResolveOptimizationModel(Y,MTTR,m,b, B)
for i = [1, 2, . . . , N] do

if ni < xi then
Add (xi − ni) spares FRUi in to SP;

end if
end for

in terms of data availability and provisioning cost, by using
the tool introduced in Section 3.3. We again use the Spider
I file system for the evaluation.

5.3.1 Evaluation of Data Availability
In this section, we present the evaluation results of dif-

ferent provisioning policies to demonstrate the effectiveness
of our optimized provisioning policy in reducing data un-
availability. Note that besides the two ad hoc provisioning
policies we mentioned before, we also include the evaluation
results of the scenario when unlimited provisioning budget is
provided, which gives the lower bound for the data unavail-
ability. Here, unlimited provisioning budget means every
individual component in the system can have a spare part
on-site. For example, in Spider I there are 96 controllers,
thus we can maintain 96 spare controllers in the spare pool
if unlimited budget were provided.

First, we present the results of the average number of da-
ta unavailability events during the 5-year operation of 48
SSUs, using different provisioning policies in Figure 8(a).
The results illustrate that at least one data unavailability
event will occur during 5 years if no provisioning policy is
used (no provisioning budget is provided). Further, the opti-
mized provisioning policy can reduce the data unavailability
more significantly with increasing provisioning budget when
compared to the ad hoc policies.

Since one data unavailability event might cause multiple
RAID groups to become unavailable simultaneously, the vol-
ume of data that can become unavailable due to even a s-
ingle unavailability event can range in the tens of terabytes.
For the Spider I file system, each RAID level 6 group is
composed of 10 1TB disks. Figure 8(b) shows the average
amount of data that might become unavailable under differ-
ent provisioning policies during 5 years of operations. We
calculate this with the knowledge of how many RAID group-
s are affected by each data unavailability event. Similar to
the results shown in Figure 8(a), the optimized provisioning
policy can also reduce the amount of unavailable data sig-
nificantly. For example, with an annual spare provisioning
budget of just $480K, the optimized provisioning policy can
protect as much as 90TB from becoming unavailable during
the 5-year operation of the storage system.

Moreover, the optimized provisioning policy also decreases
the duration of data unavailability as shown in Figure 8(c).
For the same $480K annual provisioning budget, the opti-
mized provisioning policy reduces the duration of data un-
availability for the 48 SSUs in aggregate by as much as 52%

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 N
um

be
r

of
 D

at
a

U
na

va
ila

bl
e

E
ve

nt
s

in
 5

 Y
ea

rs
48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(a) Number of Data Unavailability

0 10 20 30 40
20

40

60

80

100

120

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 A
m

ou
nt

 o
f U

na
va

ila
bl

e
D

at
a

in
 5

 Y
ea

rs
 (

T
B

)

48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(b) Amount of Unavailable Data

0 10 20 30 40
0

20

40

60

80

100

120

140

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 U
na

va
ila

bl
e

D
ur

at
io

n
in

 5
 Y

ea
rs

 (
H

ou
rs

)

48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(c) Average Unavailable Duration

Figure 8: Performance comparison between different provisioning policies

(more than 20 hours) and 81% (more than 80 hours) com-
pared to the enclosure-first and controller-first provisioning
policies.

Finding 8. Optimal provisioning increases data availabil-
ity significantly. In fact, as the provisioning budget increas-
es, it continues to perform even better, getting closer to the
unlimited budget policy.

5.3.2 Evaluation of Provisioning Cost
This section presents an evaluation of the cost of different

provisioning policies. First, we illustrate the total provision-
ing cost during 5 years using different provisioning policies,
given different annual budgets, in Figure 9. Different from
the two ad hoc policies, which try to squeeze every penny
of the budget, the cost of our optimized provisioning poli-
cy does not increase with the budget linearly. The reason
behind this is that the optimized provisioning policy allo-
cates budget based on an accurate failure estimation and
failure dependency analysis, which are more economical and
efficient compared to the ad hoc policies.

Optimized Controller−first Enclosure−first
0

5

10

15

20

25

Provisioning Policies

T
ot

al
 P

ro
vi

si
on

in
g

C
os

t i
n

5
Y

ea
rs

(1
00

,0
00

 U
S

D
)

48 SSUs, RAID6 Configuration

120,000 Annual Budget
240,000 Annual Budget
360,000 Annual Budget
480,000 Annual Budget

Figure 9: Total provisioning cost in 5 years using different
provisioning policies.

Finally, we illustrate the cost for spare provisioning the 48
SSUs in each year using the optimized provisioning policy,
given different annual budget limits (Figure 10). Two inter-
esting observations can be made from Figure 10. First, the
annual provisioning cost decreases year after year. This is
because many FRUs in Spider I have decreasing failure rates
(see Figure 2). Second, increasing the annual provisioning
budget does not necessarily increase the annual provision-
ing cost. For example, when the annual budget is increased
to $480K, the provisioning cost is almost the same as when
the annual budget is $360K. This is because the optimized
provisioning policy attempts not to over-provision the spare

parts, i.e., no more spare parts will be added if what is avail-
able is equal to what is expected to fail next year, resulting
in cost savings.

Finding 9. Optimal provisioning results in significant cost-
savings. The resulting savings can be more than 10% of the
total storage system cost over the operational life of a large-
scale storage system.

1 2 3 4 5
0

5

10

15

20

25

30

35

Year

A
nn

ua
l C

os
t f

or
 O

pt
im

iz
ed

 P
ro

vi
si

on
in

g
(1

0,
00

0
U

S
D

)

48 SSUs, RAID6 Configuration

120,000 Annual Budget
240,000 Annual Budget
360,000 Annual Budget
480,000 Annual Budget

Figure 10: Annual cost for optimized provisioning policy.

6. RELATED WORK
Storage system reliability and data availability have been

studied on several fronts. Analytical modeling, coupled with
field data analysis and fitting are among the most common
approaches. A large body of existing work focusses on build-
ing probability models for failures of disk drives and data
loss in RAID groups [3, 10, 20, 23, 27, 34]. A few exist-
ing studies have also tried to estimate the reliability of a
storage system through simulation [7, 8, 11]. In particular,
Elerath and Pecht [7] have implemented a Monte Carlo sim-
ulation for RAID 4 groups to evaluate how time dependent
failure and repair rates impact the average number of data
loss events that could occur during a given mission time.
Greenan developed a high-fidelity reliability simulator for
erasure-coded storage systems [11]. All of the simulation-
based approaches focus at the component-level, i.e., disk or
RAID group failures. Our work is novel in the sense that
we take an end-to-end approach to study reliability and its
impact on the provisioning of a large-scale storage system.
As aforementioned, field data suggests that failures of oth-
er hardware components contribute to considerable percent-
ages of storage system failures. Therefore, an end-to-end
and system-level approach is better suited to capture such
failures, and bring it bear on both initial system provisioning
as well as spare provisioning that is needed for continuous
reliable operations after deployment.

Spare provisioning optimization has been extensively s-
tudied in the industrial engineering area. Different optimiza-
tion models have been proposed by a number of researcher-
s. For instance, in order to guarantee a specific availability
metric for the system, queuing theory based approaches have
been frequently used to determine the number of spare part-
s that should be prepared [1, 15, 16, 17]. Besides queuing
theory, some optimization-based models [9, 32] were also
proposed in the operations research (OR) area. However,
due to the complexity of the extreme-scale distributed stor-
age system, existing OR related spare provisioning models
cannot be directly applied or non-trivially extended. Our
optimized provisioning model relies on realistic system-level
assumptions, and accounts for respective RBD diagrams, re-
dundancy factors for different components, different repair
times and the impact of errors To the best our knowledge,
the insights drawn from our study have not been presented
before, and are potentially useful to the community at large.

7. CONCLUSIONS
Designing an extreme-scale storage system is a balancing

act to reconcile multiple decision factors. We have proposed
a two-phased design approach, namely initial and continu-
ous provisioning that can help alleviate this situation. Initial
provisioning addresses the early stage of the procurement,
and explores the tradeoffs between cost, performance and
availability. Continuous provisioning provides a spare part
provisioning model to ensure a highly available system op-
erational experience. Both approaches leverage the insights
gained from a detailed analysis of field operational data and
a system-agnostic provisioning tool.

Our results provide several valuable insights. We find that
the actual failure rate of disk drives is on par with vendor-
provided statistics, but the time between disk failures fits
better with a join of a Weibull and an exponential distribu-
tion. We also observe that scalable building blocks play a
more dominant role in a performance-oriented HPC storage
system, than the number of disks or their capacity per u-
nit. Ad hoc provisioning policies that have been exploited
by most supercomputer sites might not be optimal, and our
dynamic provisioning policy is able to achieve higher data
availability.

While our analysis was carried out based on a particular
extreme-scale storage system, the approach, the provision-
ing tool and proposed policies are generally applicable to
different storage architectures and configurations.

8. ACKNOWLEDGEMENT
We would like to thank the reviewers for their comments.

This work was supported in part by the Oak Ridge Lead-
ership Computing Facility, located in the National Center
for Computational Sciences at ORNL, which is managed by
UT Battelle, LLC for the U.S. DOE (under the contract
No. DE-AC05-00OR22725). The work was also supported
by a JDRD grant by the Science Alliance of the Universi-
ty of Tennessee and the National Science Foundation grant
0953238.

References
[1] M. Alam and V. Mani. Queueing Model of a Bi-level

Markov Service-system and Its Solution using Recur-
sion. Trans. Reliability, 37:427–433, Oct. 1988.

[2] B. Behlendorf. Sequoia’s 55PB Lustre+ZFS Filesystem.
In Lustre User Group (LUG) Meeting. OpenSFS, 2012.

[3] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,
and D. A. Patterson. RAID: High-performance, Re-
liable Secondary Storage. ACM Computing Surveys,
26(2):145–185, June 1994.

[4] DataDirect Networks, Inc. S2A9900 Datasheet, http:
//www.ddn.com/support/downloads-documentation/,
2011.

[5] DataDirect Networks, Inc. DDN SFA12K Family, 2014.

[6] L. Devroye. Sample-based Non-uniform Random Vari-
ate Generation. In Proceedings of the 18th Conference
on Winter Simulation, WSC ’86, pages 260–265, New
York, NY, USA, 1986. ACM.

[7] J. G. Elerath and M. Pecht. Enhanced reliability mod-
eling of raid storage systems. In In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN, pages 175–184, 2007.

[8] J. G. Elerath and J. Schindler. Beyond MTTDL: A
Closed-Form RAID 6 Reliability Equation. Trans. S-
torage, 10(2):7:1–7:21, Mar. 2014.

[9] B. Ghodrati, D. Benjevic, and A. Jardine. Product sup-
port improvement by considering system operating en-
vironment: A case study on spare parts procurement.
International Journal of Quality and Reliability Man-
agement, 29(4):436–450, 2012.

[10] G. A. Gibson and D. A. Patterson. Designing Disk
Arrays for High Data Reliability. Journal of Parallel
and Distributed Computing, 17(1-2):4–27, Jan. 1993.

[11] K. Greenan. Reliability and Power-Efficiency in
Erasure-Coded Storage Systems. Technical Report
UCSC-SSRC-09-08, University of California, Santa
Cruz, Dec. 2009.

[12] P. E. Greenwood and M. S. Nikulin. A Guide to Chi-
Squared Testing. Wiley, New York, 1996.

[13] M. Holland and G. A. Gibson. Parity declustering
for continuous operation in redundant disk arrays, vol-
ume 27. ACM, 1992.

[14] IBM DS8000 Series. http://www-03.ibm.com/systems/
storage/disk/ds8000/overview.html, 2014.

[15] A. Jardine and A. Tsang. Maintenance, Replacement,
and Reliability: Theory and Applications. Dekker Me-
chanical Engineering. Taylor & Francis, 2005.

[16] T. P. Lewis and J. K. Cochran. Applying Queueing
Theory to Improve the Modeling of Spares Provisioning
of Small Combat Aircraft Units. In Proceedings of the
17th International Conference on Computers and In-
dustrial Engineering, ICC&IE ’94, pages 297–301, Tar-
rytown, NY, USA, 1995. Pergamon Press, Inc.

[17] V. Mani and V. Sarma. Queuing Network Models for
Aircraft Availability and Spares Management. Trans.
Reliability, R-33(3):257–262, Aug. 1984.

[18] NetApp, Inc. FAS8080 EX, http://www.netapp.com/
us/products/storage-systems/fas8000/, 2014.

[19] Panasas, Inc. ActiveStor 16,http://www.panasas.com/
products/activestor, 2014.

[20] D. A. Patterson, G. Gibson, and R. H. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of the 1988 ACM SIGMOD Internation-
al Conference on Management of Data, SIGMOD ’88,
pages 109–116, New York, NY, USA, 1988. ACM.

[21] Personal Communications. Spider I system administra-
tors on component replacement time, June 13, 2014.

[22] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proceed-
ings of the 5th USENIX Conference on File and Storage
Technologies, FAST ’07, pages 2–2, Berkeley, CA, USA,
2007. USENIX Association.

[23] K. K. Rao, J. L. Hafner, and R. A. Golding. Reliability
for Networked Storage Nodes. In International Con-
ference on Dependable Systems and Networks (DSN),
pages 237–248. IEEE Computer Society, 2006.

[24] M. Rausand and A. Hoyland. System Reliability The-
ory: Models, Statistical Methods and Applications.
Wiley-IEEE, 3 edition, Nov. 2003.

[25] K. Sakai, S. Sumimoto, and M. Kurokawa. High-
performance and highly reliable file system for the k
computer. FUJITSU Science Technology, 48(3):302–
209, 2012.

[26] B. Schroeder and G. A. Gibson. Disk Failures in the
Real World: What Does an MTTF of 1,000,000 Hours
Mean to You? In Proceedings of the 5th USENIX Con-
ference on File and Storage Technologies, FAST ’07,
Berkeley, CA, USA, 2007. USENIX Association.

[27] M. Schulze, G. Gibson, R. Katz, and D. Patterson.

How Reliable Is A RAID. In COMPCON Spring ÂŠ89.
Thirty-Fourth IEEE Computer Society International
Conference: Intellectual Leverage, Digest of Papers,
pages 118–123. IEEE, 1989.

[28] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,
A. Hospodor, and S. W. Ng. Disk Scrubbing in Large
Archival Storage Systems. In 12th International Work-
shop on Modeling, Analysis, and Simulation of Comput-
er and Telecommunication Systems (MASCOTS 2004),
4-8 October 2004, Vollendam, The Netherlands, pages
409–418, 2004.

[29] Seagate Technology. ClusterStor 9000, 2014.

[30] G. Shipman, D. Dillow, S. Oral, and F. Wang. The
Spider Center Wide File System: From Concept to Re-
ality. In Cray User Group (CUG) Conference, Atlanta,
May 2009.

[31] Top500 Site:. http://top500.org/lists/2010/06/, June,
2010.

[32] T. S. Vaughan. Failure Replacement and Preventive
Maintenance Spare Parts Ordering Policy. European
Journal of Operational Research, 161(1):183–190, 2005.

[33] L. Wan, F. Wang, S. Oral, S. S. Vazhkudai, and Q. Cao.
A report on simulation-driven reliability and failure
analysis of large-scale storage systems. Technical Re-
port ORNL/TM-2014/421, Oak Ridge National Labo-
ratory, December 2014.

[34] Q. Xin, E. L. Miller, T. J. E. Schwarz, D. D. E. Long,
S. A. Brandt, and W. Litwin. Reliability Mechanisms
for Very Large Storage Systems. In IEEE Symposium
on Mass Storage Systems, pages 146–156, 2003.

